Investigation of granular flow using silo centrifuge models

John Mathews

Supervisor: Prof. Wu

University of Natural Resources and Life Sciences, Vienna, Austria

john.mathews@boku.ac.at

www.pardem.eu

Tuesday 22 October 2013

Introduction and motivation

A silo centrifuge model has been developed to investigate silo flow behaviour at different gravities.

- Many features of silo design are only partially understood, even though discharge behaviours have been investigated for over a century.
- Empirical and phenomenological models are often used to facilitate silo design.
- ► A lack of analytical models is associated with inefficient processes.

Project overview 0●00000	Test procedure 0000	Results 00000000	Flow profiles	Numerical model	Conclusions	References

Aims and objectives

- Understanding the effect of stress level on flow behaviour
- Establishing the scaling laws governing this behaviour

Investigate:

- Influence of gravity on flow rate
- Compare Beverloo correlation to observations at different gravities
- Influence of material properties on flow rate response to increased gravity

Centrifuge modelling background

- Widely used in geotechnical engineering
- Early silo centrifuge models in 1970's
 - Computational and instrumentation limitations
- Scaled silo centrifuge model produces same stresses and strains in same relative locations as prototype scale (according to continuum theory)
- Quicker and cheaper than prototype scale
- Higher stresses than reduced scale models in 1g environment

 Project overview 0000000
 Test procedure 00000000
 Results 00000000
 Flow profiles 000000
 Numerical model 0000
 Conclusions
 References

Theoretical background - stress equivalence

$$q_{prototype} = \frac{1}{\mu K} \frac{A}{U} \rho_{b} g \left(1 - e^{-z} / \frac{1}{\mu K} \frac{A}{U} \right)$$

$$q_{model} = \frac{1}{\mu K} \frac{A}{N^{2}} \frac{N}{U} \rho_{b} N g \left(1 - e^{-z} / \frac{1}{\mu K} \frac{A}{N^{2}} \frac{N^{2}}{U} \right)$$

$$(1)$$

$$\cdot$$
. $q_{prototype} = q_{model}$

.

Geotechnical centrifuge

Figure 1: Schematic sketch of Trio-Tech 1231 Geotechnical Centrifuge

Project overview 00000●0	Test procedure 0000	Results 00000000	Flow profiles 000000	Numerical model	Conclusions	References

Table 1: Centrifuge specifications (TRIO-TECH, 1988)

Property	Value
Diameter of centrifuge [m]	3.0
Radius of swinging basket axis [m]	1.085
Motor	15HP DC
Slip rings	56
Radial acceleration [g]	0 to 200
Rotations per minute [1/min]	0 to 400
Maximum load capacity [G-kg]	10,000
Maximum model mass [kg]	90
Maximum model dimensions WxDxH [mm]	$540 \times 560 \times 560$
Total weight [kg]	2041

Project overview	Test procedure		Flow profiles		Conclusions	References
000000	0000	00000000	000000	0000		

Design criterion

Modelling requirements

- More than 100 particle diameters wide
- Internal wall surfaces should be smooth
- Filling should be standardised
- Quasi-planar
- Height should be maximised

Research requirements

- Model silo must be observable
- Model silo should facilitate as many kinds of experiments as possible
- Various granular materials should be able to be used
- Adequate space for data loggers, camera, lights, etc.

Project overview	Test procedure	Results	Flow profiles	Numerical model	Conclusions	References
0000000	0000	00000000	000000	0000		
Silo centrifuge mode	2					

Silo centrifuge model

Project overview	Test procedure	Flow profiles	Conclusions	References
	0000			
C11				

Four materials tested

Table 2: Material properties

Property	Fine sand	Coarse sand	Glass beads	Polyamide
Particle Diameter $\mathit{D}_{50}/\mathit{d}_1, \mathit{d}_2$ [mm]	0.4	0.8	$3.15\pm 0.1, 1.45\pm 0.1$	$0.75 \pm 0.1, 1.5 \pm 0.1$
Particle density $\rho_s [g/cm^3]$	2.65	2.644	2.750	1.1
Bulk density $\rho_b [g/cm^3]$	1.4 - 1.6	1.44 - 1.65	1.52	0.65
Void ratio e [-]	1.5	1.4	0.809	0.692
Friction angle θ_i [°]	34	34	22	25
Cohesion $c [kN/m^2]$	0	0	0	0

Figure 4: Figure 5 Glass beads mixture mixture

Figure 5: Polyamide mixture

Figure 3: Coarse sand

Project overview 0000000	Test procedure 00●0	Results 00000000	Flow profiles 000000	Numerical model	Conclusions	References
Silo centrifuge mode	2l					
Inctrumor	atation					

- Load cells record the mass of discharging material entering a collection bucket beneath the silo
- High-speed video records flow behind the front transparent acrylic wall (512 × 384 pixels, 232fps)
- Particle Image Velocimetry analysis is used to quantify the flow fields during discharge
- Pressure pads map the pressure distribution on lateral walls before and during discharge

Project overview 0000000	Test procedure ○○○●	Results 00000000	Flow profiles 000000	Numerical model	Conclusions	References

Glass beads, 5g

Glass beads, 15g

Q

Test procedure	R
	•

esults

ow protiles DOOOO Numerical model

clusions Reference

Settlement

Settlement of material M2: Coarse sand

Figure 6: 10g

Figure 8: Density increase as a result of increased gravity

Figure 7: 50g

Project overview 0000000 lest procedure

Results ○●000000

low profiles

Numerical mode

Conclusions Referen

Pressure pad investigation

Pressure pad results, model silo with 60° hopper, coarse sand (M2)

Figure 9: Silo wall pressures, coarse sand in silo with 60° hopper at 50g

Project overview Test procedure **Results** Flow profiles Numerical model Conclusions References 0000000 0000 0000 00000 00000 Pressure pad investigation

Pressure pad results in model silo with 60 degree hopper

Figure 10: Silo wall pressures, coarse sand in silo with 60° hopper at 50g

Project overview 0000000	Test procedure 0000	Results ○OO●○○○○	Flow profiles 000000	Numerical model	Conclusions	References
Pressure pad investig	ation					

result

Figure 11: Normal wall pressures at 3 times. LHS, coarse sand in silo with 60 degree hopper at 50g

Project overview 0000000	Test procedure 0000	Results 0000●000	Flow profiles	Numerical model	Conclusions	References
Mass flow rate						

Beverloo correlation

Flat-bottomed silos:

 W_B = mass flow rate (kg/s) l = long dimension of outlet D = small dimension of outlet ρ_b = Bulk density

$$W_B = C
ho_b \sqrt{g^*} (I - kd) (D - kd)^{1.5}$$

$$k = 1$$

 $g^* = applied gravity$
 $C = 1.03$
 $d = Average grain diameter$

Silos with hopper:

when
$$eta < 90 - \phi_d$$
 : $W \propto (aneta an\phi_d)^{-0.35} o W = W_B F(eta,\phi_d)$

where ϕ_d is the angle between the stagnant zone boundary and the horizontal, β is the hopper half angle.

Project overview 0000000	Test procedure 0000	Results ○○○○○●○○	Flow profiles 000000	Numerical model 0000	Conclusions	References
Discharge times						

Glass beads

Figure 12: Flat bottomed silo

PIV - Particle image velocimetry

Figure 13: Silo with 30° hopper

Project overview	Test procedure	Results	Flow profiles		Conclusions	References	
		00000000					
Normalised discharge rates							

Glass beads

Figure 14: Silo with flat bottom

PIV - Particle image velocimetry

Figure 15: Silo with 30° hopper

Project overview 0000000	Test procedure 0000	Results ○○○○○○○●	Flow profiles 000000	Numerical model	Conclusions	References
ALC: UNLESS OF						

Normalised discharge rates

Discharge time

Project overview 0000000	Test procedure 0000	Results 00000000	Flow profiles ●○○○○○	Numerical model 0000	Conclusions	References
PIV example						

Glass beads, 5g, $W_0 = 30 mm$

19x slower (12fps, original = 232 fps)

PIV methodology

- The average flow field was calculated between 10% and 40% of discharge.
- The velocity distribution along a horizontal line 112mm above the silo outlet was investigated.

Figure 18: Line 112mm above outlet showing position of velocity profile

Project overview	Test procedure	Flow profiles	Conclusions	References
		000000		

Normalised flow profiles, vertical component

Glass beads

Figure 20: Silo with 30° hopper

Normalised flow profiles, horizontal component

Glass beads

Figure 21: Silo with flat bottom

Figure 22: Silo with 30° hopper

Project overview Test procedure Results Flow profiles Numerical model Conclusions References

Flow profile variation with height

Glass beads, Flat bottomed silo

Figure 23: 1g

PARQEM

Figure 24: 10g

Project overview 0000000	Test procedure 0000	Results 00000000	Flow profiles ○○○○○●	Numerical model	Conclusions	References
Flow profile variation	n with height					

Glass beads, 10g

Figure 25: Silo with flat bottom

Figure 26: Silo with 30 degree hopper

Project overview 0000000	Test procedure 0000	Results 00000000	Flow profiles	Numerical model ●○○○	Conclusions	References
Model design						

Particle size distribution

Figure 27: Particle size distribution of material M2, DIN 1164/58 Norm Sand II Klein (1998)

Figure 28: Particle size distribution in numerical model

Project overview 0000000	Test procedure 0000	Results 00000000	Flow profiles	Numerical model ○●○○	Conclusions	References
Calibration						

Triaxial calibration

Figure 29: Variation of friction angle with confining pressure for physical samples of different initial density

Figure 30: Variation of friction angle with confining pressure for DEM samples of different initial density

Project overview

lest procedur

Results

Flow profiles

Numerical model

Conclusions Reference

Numerical Results

Discharge rates - silo with flat bottom

Figure 33: 30g

Figure 34: 20g

Figure 35: 10g

Project overview 0000000	Test procedure	Results 00000000	Flow profiles	Numerical model ○○○●	Conclusions	References
N						

Discharge rate comparison

Figure 36: Observed discharge rates compared with Beverloo prediction

Project overview	Test procedure 0000	Results 00000000	Flow profiles 000000	Numerical model 0000	Conclusions	References

Conclusions

- Quasi-two-dimensional silo centrifuge model developed
- Four materials tested Fine sand, Coarse sand, Glass beads and Polyamide
- Two silo geometries tested 30° hopper and flat bottom
- Discharge rate is proportional to square root of gravity
- Internal flow velocity is proportional to square root of gravity
- Stagnant zone boundaries are independent of gravity
- Friction angle is independent of gravity

Project overview	Test procedure	Flow profiles	Conclusions	References

Thank you

john.mathews@boku.ac.at

www.pardem.eu

Project overview 0000000	Test procedure 0000	Results 00000000	Flow profiles 000000	Numerical model	Conclusions	References

References I

Rose, H. F. and T. Tanaka (1956). In: The Engineer (London), page 208.

Beverloo, W. A., H. A. Leniger, and J. van de Velde (1961). "The Flow of Granular Solids Through Orifices". In: *Chemical Engineering Sciences*, pages 260 –269.

Supplemental content

Theoretical background - stress equivalence

- Treats granular media as continuous.
- Predicts that a 1/N scale centrifuge model will produce the same stresses and strains in the same relative locations as in a prototype.

scale
$$1/N \implies \begin{cases} & \text{Acceleration} \rightarrow \text{Acceleration} \times N \\ & \text{Length} \rightarrow \text{Length}/N \end{cases}$$

5,6. LED array

- 7. Vertical roller
- 8. Collection bucket
- 9. Camera stand
- 10. Data logger

Dimension	Length
Silo height	290mm
Internal width	150mm
Internal Thickness	100mm
Outlet width	30mm

Two arrangements:

Flat-bottomed

Hopper with 30° half-angle

Four centrifugal accelerations corresponding to 1g, 5g, 10g, 15g at the silo outlet. appendix

Pressure pad calibration

Figure 37: Typical data from a pressure pad calibration test

Figure 38: Calibration curve for blue pressure sensor using averaged data

Effect of hopper angle on gravity discharge rate Rose and Tanaka¹ reported the following correlation (pre-Beverloo²),

$$W = W_B F(\beta, \phi_d) \tag{4}$$

$$F(\beta, \phi_d) = (\tan \beta \tan \phi_d)^{-0.35} \qquad \text{for } \beta < 90 - \phi_d \qquad (5)$$

$$F = 1 \qquad \qquad \text{for } \beta > 90 - \phi_d \qquad (6)$$

where W_B is the discharge rate using the Beverloo correlation ϕ_d can not yet be reliably predicted.

back

¹ Rose and Tanaka, 1956.

² Revended Aniger, and Velde, 1961.

appendix

Hour glass theory

$$W = C(K) \frac{\rho_b \sqrt{g^*} (l - kd)(D - kd)^{1.5}}{\sqrt{\sin \alpha}}$$
(7)

$$C(K) = \sqrt{\frac{1 + K}{2(K - 2)}}$$
(8)

$$K = \frac{1 + \sin \theta_i}{1 - \sin \theta_i}$$
(9)

Parameters

Parameter	Value
Wall normal stiffness [N/mm]	1e8
Wall shear stiffness [N/mm]	1e8
Wall friction coefficient [-]	0.4
Outlet width [mm]	20
Periodic thickness [mm]	5.95

Table 3: Wall parameters

Parameter	Value
Particle size [mm]	1.40 - 2.00
Material density [kg/m ³]	2655
Ball normal stiffness [N/mm]	1e7
Ball shear stiffness [N/mm]	1e7
Ball friction coefficient [-]	2.2

Table 4: Ball parameters

appendix

Density increase at increased gravities

Figure 39: Region used to calculate bulk density in silo with 30 degree hopper

Figure 40: Bulk density at different gravities

back